Clustering Multivariate Climate Data Streamsusing Fractal Dimension
نویسندگان
چکیده
A data stream is a flow of data produced continuously along the time. Storing and analyzing such information become challenging due to exponential growth of the data volume collected. In this context, some methods were proposed to cluster data streams with similar behavior along the time. However, those methods have failed on clustering data flows with more than one attribute, i.e., multivariate flows. This paper introduces a new method to cluster multivariate data streams, based on fractal dimension, reading the data only once. We evaluated our method over real multivariate data streams generated by climate sensors. Not only was our method able to cluster the flows of data, but also identified sensors with similar behavior during the analyzed period.
منابع مشابه
Improving Multivariate Data Streams Clustering
Clustering data streams is an important task in data mining research. Recently, some algorithms have been proposed to cluster data streams as a whole, but just few of them deal with multivariate data streams. Even so, these algorithms merely aggregate the attributes without touching upon the correlation among them. In order to overcome this issue, we propose a new framework to cluster multivari...
متن کاملClustering Multivariate Data Streams by Correlating Attributes using Fractal Dimension
A data stream is a flow of data produced continuously along the time. Storing and analyzing such information become challenging due to exponential growth of the data volume collected. Recently, some algorithms have been proposed to cluster data streams as a whole, but just few of them deal with multivariate data streams. Even so, these algorithms merely aggregate the attributes without touching...
متن کاملCharacterisation of long-term climate change by dimension estimates of multivariate palaeoclimatic proxy data
The problem of extracting climatically relevant information from multivariate geological records is tackled by characterising the eigenvalues of the temporarily varying correlation matrix. From these eigenvalues, a quantitative measure, the linear variance decay (LVD) dimension density, is derived. The LVD dimension density is shown to serve as a suitable estimate of the fractal dimension densi...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملClustering based on correlation fractal dimension over an evolving data stream
Online clustering, in an evolving high dimensional data is an amazing challenge for data mining applications. Although, many clustering strategies have been proposed, it is still an exciting task since the published algorithms fail to do well with high dimensional datasets, finding arbitrary shaped clusters and handling outliers. Knowing fractal characteristics of dataset can help abstract the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015